The scientific targets: the myocardium, the vasculature and the body’s response to heart failure

Published: March 28, 2024
Abstract Views: 2136
PDF: 66
HTML: 14
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Heart failure (HF) is a common but complex clinical syndrome associated with a reduced ability of a heart to pump and/or fill with blood. We now appreciate the more complex picture involving metabolic derangements, changes in fetal gene expression and abnormalities in the periphery as forming part of the HF syndrome. Therapeutic targets include the failing myocardium, the vasculature and peripheral mechanisms. The pathophysiology of HF is currently being intensively investigated, with the identification of new relevant mechanisms, some of them emerging as potential therapeutic targets.

 

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

McMurray J, Petrie M, Swedberg, Komajda M, Anker S, Gardner R. Heart Failure. Chapter 23. THE ESC TEXTBOOK OF CARDIOVASCULAR MEDICINE 2nd edition. 2009. Oxford University Press. DOI: https://doi.org/10.1093/med/9780199566990.003.023
Caro CG. The Mechanics of the Circulation. 2nd ed. New York: Cambridge University Press; 2011.
Cohn JN, Ferrari R, Sharpe N. Cardiac remodelling – concepts and clinica limplications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 2000; 35: 569–82. DOI: https://doi.org/10.1016/S0735-1097(99)00630-0
Verdecchia P, Angeli F, Cavallini C, Gattobigio R, Gentile G, Staessen JA, et al. Blood pressure reduction and renin-angiotensin system inhibition for prevention of congestive heart failure: a meta-analysis. Eur Heart J 2009;30:679–88 DOI: https://doi.org/10.1093/eurheartj/ehn575
Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016;37(27):2129–200. DOI: https://doi.org/10.1093/eurheartj/ehw128
Stone GW, Lindenfeld J, Abraham WT, et al. Transcatheter Mitral-Valve Repair in Patients with Heart Failure. N Engl J Med. 2018;379(24):2307-2318. DOI: https://doi.org/10.1056/NEJMoa1806640
Breithardt OA, Stellbrink C, Franke A, Balta O, Diem BH, Bakker P, et al.Acute effects of cardiac resynchronization therapy on left ventricular Doppler indices in patients with congestive heart failure. Am Heart J 2002;143:34–44. DOI: https://doi.org/10.1067/mhj.2002.119616
Auricchio A, Stellbrink C, Sack S, Block M, Vogt J, Bakker P, et al. Longterm clinical effect of hemodynamically optimized cardiac resynchronization therapy in patients with heart failure and ventricular conduction delay. J Am Coll Cardiol 2002;39:2026–33. DOI: https://doi.org/10.1016/S0735-1097(02)01895-8
Tamargo J, López-Sendón J. Novel therapeutic targets for the treatment of heart failure. Nat Rev Drug Discov 10(7):536-555, 2011 DOI: https://doi.org/10.1038/nrd3431
Tamargo J, Caballero R, Delpón E. New drugs in preclinical and early stage clinical development in the treatment of heart failure, Expert Opinion on Investigational Drugs 2019; 28:1, 51-71 DOI: https://doi.org/10.1080/13543784.2019.1551357
Maack C, Eschenhagen T, Hamdani N, et al. Treatments targeting inotropy. Eur Heart J. 2018 Oct 8. doi: 10.1093/eurheartj/ehy600. [Epub ahead of print] DOI: https://doi.org/10.1093/eurheartj/ehy600
Nishida K, Yamaguchi Otsu K, et al. Crosstalk between autophagy and apoptosis in heart disease. Circ Res 2008; 103: 343–51 DOI: https://doi.org/10.1161/CIRCRESAHA.108.175448
Segura AM, Frazier OH, Buja LM. Fibrosis and heart failure. Heart Fail Rev. 2014 ;19(2):173-85`. DOI: https://doi.org/10.1007/s10741-012-9365-4
Levick SP, Brower GL. Regulation of matrix metalloproteinases is at the heart of myocardial remodeling. Am J Physiol Heart Circ Physiol 2008; 295:H1375–H1376 DOI: https://doi.org/10.1152/ajpheart.907.2008
Spinale FG, Villarreal F. Targeting matrix metalloproteinases in heart disease: lessons from endogenous inhibitors. Biochem Pharmacol. 2014;90(1):7-15. DOI: https://doi.org/10.1016/j.bcp.2014.04.011
Smith JG. Molecular Epidemiology of Heart Failure: Translational Challenges and Opportunities. JACC Basic Transl Sci. 2017;2(6):757-769 DOI: https://doi.org/10.1016/j.jacbts.2017.07.010
Zhou SS, Jin JP, Wang JQ, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39(7):1073-1084. DOI: https://doi.org/10.1038/aps.2018.30
Napoli C., Grimaldi V., De Pascale M.R., Sommese L., Infante T., Soricelli A. Novel epigenetic-based therapies useful in cardiovascular medicine. World J. Cardiol. 2016;8(2):211–219. DOI: https://doi.org/10.4330/wjc.v8.i2.211
Di Salvo T.G., Haldar S.M. Epigenetic mechanisms in heart failure pathogenesis. Circ. Heart Fail. 2014;7(5):850–863. DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.114.001193
Berezin A. Epigenetics in heart failure phenotypes. BBA Clin. 2016;6:31-7. DOI: https://doi.org/10.1016/j.bbacli.2016.05.005
Bayliss J, Norell M, Canepa-Anson R, Sutton G, Poole-Wilson P. Untreated heart failure: clinical and neuroendocrine effects of introducing diuretics. Br Heart J 1987;57:17–22. DOI: https://doi.org/10.1136/hrt.57.1.17
Senni M, Paulus WJ, Gavazzi A, et al. New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes. Eur Heart J 2014;35:2797–815. DOI: https://doi.org/10.1093/eurheartj/ehu204
Pries AR, Reglin B. Coronary microcirculatory pathophysiology: can we afford it to remain a black box? Eur Heart J 2017;38:478–88. DOI: https://doi.org/10.1093/eurheartj/ehv760
Hogg K, McMurray J. Neurohumoral pathways in heart failure with preserved systolic function. Prog Cardiovasc Dis 2005;47:357–66. DOI: https://doi.org/10.1016/j.pcad.2005.02.001
Bavishi C, Chatterjee S, Ather S, Patel D, Messerli FH. Beta-blockers in heart failure with preserved ejection fraction: a meta-analysis. Heart Fail Rev 2015;20:193–201. DOI: https://doi.org/10.1007/s10741-014-9453-8
Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age- and gender related ventricular-vascular stiffening: a community-based study. Circulation 2005; 112:2254–2262. DOI: https://doi.org/10.1161/CIRCULATIONAHA.105.541078
Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2017;70(6):776-803. DOI: https://doi.org/10.1161/CIR.0000000000000509
McMurray JJ. Neprilysin inhibition to treat heart failure: a tale of science, serendipity, and second chances. Eur J Heart Fail 2015;17:242–7. DOI: https://doi.org/10.1002/ejhf.250
Watson AM, Hood SG, May CN. Mechanisms of sympathetic activation in heart failure. Clin Exp Pharmacol Physiol 2006;33:1269–74 DOI: https://doi.org/10.1111/j.1440-1681.2006.04523.x
Esler M. The 2009 Carl Ludwig Lecture: Pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management. J Appl Physiol 2010;108:227–37. DOI: https://doi.org/10.1152/japplphysiol.00832.2009
J.N. Cohn, M.A. Pfeffer, J. Rouleau, et al. Adverse mortality effect of central sympathetic inhibition with sustained-release moxonidine in patients with heart failure (MOXCON). Eur J Heart Fail 2003; 5: 659-667. DOI: https://doi.org/10.1016/S1388-9842(03)00163-6
Grassi G, Brambilla G, Pizzalla DP, Seravalle G. Baroreflex Activation Therapy in Congestive Heart Failure: Novel Findings and Future Insights. Curr Hypertens Rep. 2016;18(8):60. DOI: https://doi.org/10.1007/s11906-016-0667-0
Singh JP, Kandala J, Camm AJ. Non-pharmacological modulation of the autonomic tone to treat heart failure. Eur Heart J. 2014 Jan;35(2):77-85. DOI: https://doi.org/10.1093/eurheartj/eht436
Böhm M, Ewen S, Mahfoud F. Renal Denervation for Chronic Heart Failure: Background and Pathophysiological Rationale. Korean Circ J. 2016;47(1):9-15. DOI: https://doi.org/10.4070/kcj.2016.0231
Premchand RK, Sharma K, Mittal S. Extended Follow-Up of Patients With Heart Failure Receiving Autonomic Regulation Therapy in the ANTHEM-HF Study. J Card Fail. 2016 ;22(8):639-42. DOI: https://doi.org/10.1016/j.cardfail.2015.11.002
Paula-Ribeiro M, Rocha A. The peripheral-central chemoreflex interaction: where do we stand and what is the next step?. J Physiol. 2016;594(6):1527-8. DOI: https://doi.org/10.1113/JP271901
Del Rio R, Andrade DC, Toledo C, et al. Carotid Body-Mediated Chemoreflex Drive in The Setting of low and High Output Heart Failure. Sci Rep. 2017;7(1):8035. DOI: https://doi.org/10.1038/s41598-017-08142-3
Sattler S, Fairchild P, Watt FM, Rosenthal N, Harding SE. The adaptive immune response to cardiac injury—the true roadblock to effective regenerative therapies? NPJ Regen Med 2017;2:19. DOI: https://doi.org/10.1038/s41536-017-0022-3
Jankowska EA, Ponikowski P, Piepoli MF, Banasiak W, Anker SD, Poole-Wilson PA. Autonomic imbalance and immune activation in chronic heart failure - pathophysiological links. Cardiovasc Res. 2006;70(3):434-45. DOI: https://doi.org/10.1016/j.cardiores.2006.01.013
Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017;377:1119–1131. DOI: https://doi.org/10.1056/NEJMoa1707914
Van Tassell BW, Abouzaki NA, Oddi Erdle C, et al. Interleukin-1 blockade in acute decompensated heart failure. J Cardiovasc Pharmacol 2016;67:544–551. DOI: https://doi.org/10.1097/FJC.0000000000000378
Abbate A, Kontos MC, Grizzard JD, et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot Study). Am J Cardiol 2010;105:1371–1377. DOI: https://doi.org/10.1016/j.amjcard.2009.12.059
Josiak K, Jankowska EA, Piepoli MF, Banasiak W, Ponikowski P. Skeletal myopathy in patients with chronic heart failure: significance of anabolicandrogenic hormones. J Cachexia Sarcopenia Muscle. 2014;5(4):287-96. DOI: https://doi.org/10.1007/s13539-014-0152-z
Ponikowski PP, Chua TP, Francis DP, Capucci A, Coats AJ, Piepoli MF. Muscle ergoreceptor overactivity reflects deterioration in clinical status and cardiorespiratory reflex control in chronic heart failure. Circulation. 2001;104(19):2324-30. DOI: https://doi.org/10.1161/hc4401.098491
von Haehling S, Steinbeck L, Doehner W, et al. Muscle wasting in heart failure: an overview. Int J Biochem Cell Biol. 2013;45:2257–65. DOI: https://doi.org/10.1016/j.biocel.2013.04.025
Groenveld HF, Januzzi JL, Damman K, et al. Anemia and mortality in heart failure patients a systematic review and meta-analysis. J Am Coll Cardiol 2008;52:818–27. DOI: https://doi.org/10.1016/j.jacc.2008.04.061
Anand IS, Gupta P. Anemia and Iron Deficiency in Heart Failure: Current Concepts and Emerging Therapies. Circulation. 2018;138(1):80-98. DOI: https://doi.org/10.1161/CIRCULATIONAHA.118.030099
Jankowska EA, Malyszko J, Ardehali H, et al. Iron status in patients with chronic heart failure. Eur Heart J 2013;34:827–34. DOI: https://doi.org/10.1093/eurheartj/ehs377
Jankowska EA, von Haehling S, Anker SD, Macdougall IC, Ponikowski P. Iron deficiency and heart failure: diagnostic dilemmas and therapeuticperspectives. Eur Heart J 2013;34:816–29. DOI: https://doi.org/10.1093/eurheartj/ehs224
Jankowska EA, Tkaczyszyn M, Suchocki T, et al. Effects of intravenous iron therapy in iron-deficient patients with systolic heart failure: a meta-analysis of randomized controlled trials. Eur J Heart Fail. 2016 Jul;18(7):786–95. DOI: https://doi.org/10.1002/ejhf.473
Urso C, Brucculeri S, Caimi G. Acid-base and electrolyte abnormalities in heart failure: pathophysiology and implications. Heart Fail Rev. 2015;20(4):493-503. DOI: https://doi.org/10.1007/s10741-015-9482-y
Grodin JL. Pharmacologic Approaches to Electrolyte Abnormalities in Heart Failure. Curr Heart Fail Rep. 2016;13(4):181-9. DOI: https://doi.org/10.1007/s11897-016-0295-7
Bakris G, Pitt B, Weir M, et al. Effect of patiromer on serum potassium level in patients with hyperkalemia and diabetic kidney disease: the amethyst-DN randomized clinical trial. JAMA. 2015;314:151–61. DOI: https://doi.org/10.1001/jama.2015.7446
Sr A, Singh B, Lavin P, Stavros F, Rasmussen H. A phase 2 study on the treatment of hyperkalemia in patients with chronic kidney disease suggests that the selective potassium trap, Zs-9, is safe and efficient. Kidney Int. 2015;88:404–11. DOI: https://doi.org/10.1038/ki.2014.382
Kosiborod M, Cavender MA, Fu AZ, et al. Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation. 2017 Jul 18;136(3):249-259. DOI: https://doi.org/10.1161/CIRCULATIONAHA.117.029190
Lam CSP, Voors AA, de Boer RA, Solomon SD, van Veldhuisen DJ. Heart failure with preserved ejection fraction: from mechanisms to therapies. Eur Heart J. 2018;39(30):2780-2792. DOI: https://doi.org/10.1093/eurheartj/ehy301
Teerlink JR, Felker GM, McMurray JJV, et al. Acute Treatment With Omecamtiv Mecarbil to Increase Contractility in Acute Heart Failure: The ATOMIC-AHF Study. J Am Coll Cardiol. 2016;67(12):1444-1455. DOI: https://doi.org/10.1016/j.jacc.2016.01.031
Tschöpe C, Kherad B, Klein O, et al. Cardiac contractility modulation: mechanisms of action in heart failure with reduced ejection fraction and beyond. Eur J Heart Fail. 2019;21(1):14-22. DOI: https://doi.org/10.1002/ejhf.1349
Shah SJ, Feldman T, Ricciardi MJ, et al. One-Year Safety and Clinical Outcomes of a Transcatheter Interatrial Shunt Device for the Treatment of Heart Failure With Preserved Ejection Fraction in the Reduce Elevated Left Atrial Pressure in Patients With Heart Failure (REDUCE LAP-HF I) Trial: A Randomized Clinical Trial. JAMA Cardiol. 2018;3(10):968-977. DOI: https://doi.org/10.1001/jamacardio.2018.2936
Rosik J, Szostak B, Machaj F, Pawlik A. Potential targets of gene therapy in the treatment of heart failure. Expert Opin Ther Targets. 2018;22(9):811-816. DOI: https://doi.org/10.1080/14728222.2018.1514012

How to Cite

Vidal-Pérez, R., & Jankowska, E. A. (2024). The scientific targets: the myocardium, the vasculature and the body’s response to heart failure. Global Cardiology, 2(1). https://doi.org/10.4081/cardio.2024.19